The effects of nucleotides on MutS-DNA binding kinetics clarify the role of MutS ATPase activity in mismatch repair.

نویسندگان

  • Emily Jacobs-Palmer
  • Manju M Hingorani
چکیده

MutS protein initiates mismatch repair with recognition of a non-Watson-Crick base-pair or base insertion/deletion site in DNA, and its interactions with DNA are modulated by ATPase activity. Here, we present a kinetic analysis of these interactions, including the effects of ATP binding and hydrolysis, reported directly from the mismatch site by 2-aminopurine fluorescence. When free of nucleotides, the Thermus aquaticus MutS dimer binds a mismatch rapidly (k(ON)=3 x 10(6) M(-1) s(-1)) and forms a stable complex with a half-life of 10 s (k(OFF)=0.07 s(-1)). When one or both nucleotide-binding sites on the MutS*mismatch complex are occupied by ATP, the complex remains fairly stable, with a half-life of 5-7 s (k(OFF)=0.1-0.14 s(-1)), although MutS(ATP) becomes incapable of (re-)binding the mismatch. When one or both nucleotide-binding sites on the MutS dimer are occupied by ADP, the MutS*mismatch complex forms rapidly (k(ON)=7.3 x 10(6) M(-1) s(-1)) and also dissociates rapidly, with a half-life of 0.4 s (k(OFF)=1.7 s(-1)). Integration of these MutS DNA-binding kinetics with previously described ATPase kinetics reveals that: (a) in the absence of a mismatch, MutS in the ADP-bound form engages in highly dynamic interactions with DNA, perhaps probing base-pairs for errors; (b) in the presence of a mismatch, MutS stabilized in the ATP-bound form releases the mismatch slowly, perhaps allowing for onsite interactions with downstream repair proteins; (c) ATP-bound MutS then moves off the mismatch, perhaps as a mobile clamp facilitating repair reactions at distant sites on DNA, until ATP is hydrolyzed (or dissociates) and the protein turns over.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein.

Previous analyses of both Thermus aquaticus MutS homodimer and Saccharomyces cerevisiae Msh2-Msh6 heterodimer have revealed that the subunits in these protein complexes bind and hydrolyze ATP asymmetrically, emulating their asymmetric DNA binding properties. In the MutS homodimer, one subunit (S1) binds ATP with high affinity and hydrolyzes it rapidly, while the other subunit (S2) binds ATP wit...

متن کامل

Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair.

The MutS protein initiates DNA mismatch repair by recognizing mispaired and unpaired bases embedded in duplex DNA and activating endo- and exonucleases to remove the mismatch. Members of the MutS family also possess a conserved ATPase activity that belongs to the ATP binding cassette (ABC) superfamily. Here we report the crystal structure of a ternary complex of MutS-DNA-ADP and assays of initi...

متن کامل

Native mass spectrometry provides direct evidence for DNA mismatch-induced regulation of asymmetric nucleotide binding in mismatch repair protein MutS

The DNA mismatch repair protein MutS recognizes mispaired bases in DNA and initiates repair in an ATP-dependent manner. Understanding of the allosteric coupling between DNA mismatch recognition and two asymmetric nucleotide binding sites at opposing sides of the MutS dimer requires identification of the relevant MutS.mmDNA.nucleotide species. Here, we use native mass spectrometry to detect simu...

متن کامل

Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS. A structural model for the vanadate-MutS interaction at the Walker A motif.

MutS, a member of the ABC ATPases superfamily, is a mismatch DNA-binding protein constituent of the DNA post-replicative mismatch repair system (MMRS). In this work, it is shown that the ATPase activity of Pseudomonas aeruginosa and Escherichia coli MutS is inhibited by ortho- and decavanadate. Structural comparison of the region involved in the ATP binding of E.coli MutS with the corresponding...

متن کامل

Large conformational changes in MutS during DNA scanning, mismatch recognition and repair signalling.

MutS protein recognizes mispaired bases in DNA and targets them for mismatch repair. Little is known about the transient conformations of MutS as it signals initiation of repair. We have used single-molecule fluorescence resonance energy transfer (FRET) measurements to report the conformational dynamics of MutS during this process. We find that the DNA-binding domains of MutS dynamically interc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 366 4  شماره 

صفحات  -

تاریخ انتشار 2007